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§1 Moment Generating Functions

Definition 1.1 (Moment generating function) Let X be a discrete random variable that
can take on a finite number l of distinct values x1, x2, . . . , xl, each with a corresponding
probability p1, p2, . . . , pl. These probabilities must satisfy the conditions 0 ≤ pi ≤ 1 and∑l

i=1 pi = 1. The moment generating function (MGF) of X, denoted MX(t), is a
function defined for all real t as the expected value of the exponential function etX , and is
given by the formula:

MX(t) = E[etX ] =

l∑
i=1

pie
txi .

The MGF can be considered a transformation of the probability distribution of X, reflecting
the distribution’s behavior through the moments it generates. For example, the n-th moment of
X, µ′

n, is obtained by differentiating MX(t) n times with respect to t and evaluating at t = 0:

µ′
n =

dnMX(t)

dtn

∣∣∣∣
t=0

.

If two random variables have the same MGF, and it exists in an open interval around t = 0, they
have the same distribution. The MGF is not guaranteed to exist for all random variables, but
when it does, it offers a powerful tool for analysis. Additionally, the MGF is closely related to
other transforms in probability theory, such as the characteristic function.
Assuming c = max |xi|, the series expansion of etX converges and is bounded by e|t|c, thus

ensuring the existence of the moment generating function M(t) for the random variable X. The
moment generating function can be expressed as an infinite Taylor series:

M(t) =

∞∑
k=0

tk

k!
E[Xk]. (1)

This expansion allows us to write the k-th moment of X as the k-th derivative of M(t) evaluated
at zero:

E[Xk] = M (k)(0). (2)

Moreover, taking the k-th derivative of the MGF with respect to t and evaluating it at t = 0
provides us with a direct calculation of the moments of X, which is one reason why M(t) is a
valuable tool in probability theory. For the simple random variable X, this derivative is:

M (k)(t) =

l∑
i=1

pix
k
i e

txi = E[XketX ]. (3)

It is important to note that M(0) = 1, as the zeroth moment of a random variable is always 1,
corresponding to the total probability.

Example 1.2. Consider a Bernoulli random variable X which takes the value 1 with probability
p and the value 0 with probability q = 1 − p. The moment generating function (MGF) of X,
denoted by MX(t), is defined as the expected value of etX , and is given by:

MX(t) = E[etX ] = p · et·1 + q · et·0 = pet + q.
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The first moment, or the expected value, is the first derivative of the MGF evaluated at t = 0:

M ′
X(t) =

d

dt
(pet + q) = pet, so M ′

X(0) = pe0 = p.

The second moment is obtained by differentiating again to obtain the second derivative, and
evaluating at t = 0:

M ′′
X(t) =

d2

dt2
(pet + q) = pet, so M ′′

X(0) = pe0 = p.

The variance of X is then calculated as:

Var(X) = E[X2]− (E[X])2 = M ′′
X(0)− (M ′

X(0))2 = p− p2 = pq.

Consider n independent random variables X1, X2, . . . , Xn. Independence implies that for any
real number t, the exponential functions etX1 , etX2 , . . . , etXn are also independent. Let M(t)
represent the moment generating function of the sum S = X1 +X2 + . . .+Xn, and let MXi(t)
denote the moment generating function of each Xi.
Since moment generating functions are defined as the expected value of the exponential of

the random variable, for independent random variables, the expected value of a product is the
product of the expected values, due to their independence. This leads to the following relation
for the MGF of the sum S:

MS(t) = E[etS ] = E

[
n∏

i=1

etXi

]
=

n∏
i=1

E[etXi ] =

n∏
i=1

MXi(t), (4)

where MS(t) is the MGF of S and MXi
(t) is the MGF of Xi

1.

Definition 1.3 (Cumulant Generating Function) The cumulant generating function of X (or
of its distribution) is

C(t) = logM(t) = logE[etX ]a. (5)

aNote that M(t) is strictly positive.

Since C ′ = M ′

M and C ′′ =
(

M ′M ′′

M2

)
−
(

M ′

M

)2
, and since M(0) = 1,

C(0) = 0, C ′(0) = E[X], C ′′(0) = Var[X]. (6)

Let mk = E[Xk]. The leading term in (9.2) is m0 = 1, and so a formal expansion of the
logarithm in (5) gives

C(t) =

∞∑
ν=1

(−1)ν+1

ν

( ∞∑
k=1

mk

k!
tk

)ν

. (7)

Since M(t) → 1 as t → 0, this expression is valid for t in some neighborhood of 0. By the
theory of series, the powers on the right can be expanded and terms with a common factor ti are
grouped together in the expansion of the cumulant generating function of X as

C(t) =

∞∑
i=1

ci
i!
ti, (8)

which is convergent within a certain neighborhood of 0.
Here, ci represents the cumulants of X. By matching terms in the expansions of the cumulant

and moment generating functions and utilizing the previously established relationships, we
deduce that c1 = m1 and c2 = m2 −m2

1. Although expressing each ci in terms of the moments

1This property allows for the simplification of calculating the MGF of the sum of independent random variables
by merely multiplying their individual MGFs, which is a convenient method especially when dealing with
sums of many random variables. Furthermore, distributions can, in principle, be recovered from their MGFs,
provided that the MGF uniquely identifies the distribution, which is the case if the MGF exists in an interval
around t = 0.
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m1, . . . ,mi is possible, it can quickly become complex. When E[X] = 0, we find m1 = c1 = 0,
and straightforward computation shows that

c3 = m3, c4 = m4 − 3m2
2. (9)

Logarithms transform the product relation into a sum,

C(t) = C1(t) + . . .+ Cn(t), (10)

corresponding to the sum of the cumulant generating functions, which is applicable when
independence is assumed. The addition property of cumulants for independent random variables
follows from this and definition (6).

It is evident that M ′′(t) = E[X2etX ] ≥ 0, and since (M ′(t))2 ≤ M(t)M ′′(t) by the Cauchy-
Schwarz inequality, it holds that C ′′(t) ≥ 0.

Therefore, both the moment generating function and the cumulant generating
function are convex.

§2 Large Deviations

Our goal will be prove the following theorem:

Theorem 2.1 — Suppose that Y satisfies E[Y ] < 0 and P(Y > 0) > 0. Define ρ and τ by

inf
t
M(t) = M(τ) = ρ, 0 < ρ < 1, τ > 0,

Let Z be a random variable with distribution

P(Z ≥ yj) = eτyj
P(Y = yj)

ρ
,

and define E[Z], S2 = E[Z2] as

E[Z] =
M ′(τ)

ρ
= 0, S2 = E[Z2] =

M ′′(τ)

ρ
> 0.

Then
P(Y ≥ 0) = ρe−θ,

where θ satisfies

0 ≤ θ ≤ τS

P(Z ≥ 0)
− logP(Z ≥ 0).

Proof. Consider a simple random variable Y that takes on values yj with corresponding prob-
abilities pj . To estimate P (Y ≥ α) when Y has a mean of 0 and α is positive, we subtract α
from Y to instead estimate P (Y ≥ 0) where Y has a negative mean. We assume E[Y ] < 0 and
P (Y > 0) > 0, to circumvent trivial cases. The moment generating function M(t) =

∑
j pje

tyj

satisfies M ′(0) < 0.

As t approaches infinity, M(t) increases without bound, and since M(t) is convex, it achieves
its minimum ρ at some positive τ :

inf
t
M(t) = M(τ) = ρ, 0 < ρ < 1, τ > 0.

An auxiliary random variable Z is defined on a different probability space such that

P [Z = yj ] =
eτyj

ρ
P [Y = yj ],
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for each yj in the range of Y , ensuring that the probabilities sum to one. The moment generating
function for Z is

E[etZ ] =
∑
j

eτyj

ρ
pje

tyj =
M(τ + t)

ρ
,

and hence,

E[Z] =
M ′(τ)

ρ
= 0, s2 = E[Z2] =

M ′′(τ)

ρ
> 0.

Using Markov’s inequality, for all positive t, P (Y ≥ 0) can be bounded by ρ. Obtaining
inequalities in the opposite direction is more challenging. If Σ′ represents the summation over
indices j for which yj ≥ 0, we have

P [Y ≥ 0] =

′∑
pj =

′∑
e−τyjpje

τyjP [Z = yj ].

Upon simplifying the sum as e−θ with ρ = P [Z ≥ 0] and invoking Jensen’s inequality,

−θ ≥ log

′∑
e−τyjp−1

j P [Z = yj ] + log ρ ≥ −τs−1
′∑ yj

s
P [Z = yj ] + log ρ.

Lyapounov’s Inequality states that for a non-negative random variable X and 0 < α < β, the
following holds:

(E[|X|α])1/α ≤ (E[|X|β ])1/β

In the given context, Lyapounov’s inequality is used to relate the first and second moments of
the random variable Z. By setting α = 1 and β = 2, we apply the inequality as follows:

E[|Z|] ≤ (E[Z2])1/2

Given that E[Z2] = s2 and E[Z] = 0, this simplifies to:

E[|Z|] ≤ s

Applying Lyapounov’s inequality leads to a relationship between θ and the bounds for P [Z ≥ 0]:

0 ≤ θ ≤ τs

P [Z ≥ 0]
− logP [Z ≥ 0]. (11)

To use (11) requires a lower bound for P[Z ≥ 0].

Theorem 2.2 — If E[Z] = 0, E[Z2] = s2, and E[Z4] = ξ4 > 0, then P [Z ≥ 0] ≥ s4

4ξ4 .

Proof. Define Z+ as Z conditioned on Z ≥ 0 and Z− as −Z conditioned on Z < 0. Both Z+

and Z− are nonnegative, and we let Z be their difference, Z = Z+ − Z−, and Z2 be the sum of
their squares, Z2 = (Z+)2 + (Z−)2, which gives us

s2 = E
[
(Z+)2

]
+ E

[
(Z−)2

]
.

Let p = P[X ≥ 0] and using the Cauchy-Schwarz inequality, we have

E
[
(Z+)2

]
= E

[
1{Z≥0}Z

2
]
≤ E1/2

[
1
2
{Z≥0}

]
E1/2

[
Z4
]
= p1/2s2.

Applying Hölder’s inequality, for Z−, we have

E
[
(Z−)2

]
= E

[
(Z−)3/2(Z−)1/2

]
≤ E2/3

[
(Z−)3

]
E1/3

[
(Z−)2

]
≤ s2/3E4/3

[
Z−] .
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Since the expectation of Z is zero, applying Hölder’s inequality again, we find

E
[
(Z−)2

]
= E

[
(Z+)2

]
= E

[
Z2
1{Z≥0}

]
≤ E1/4

[
Z4
]
E3/4

[
1
4
{Z≥0}

]
= s3/4p3/4.

Combining these inequalities gives

s2 ≥ p1/2s2 + s2/3p4/3,

which concludes the proof.

§3 The Law of the Iterated Logarithm

Theorem 3.1 — Let Sn = X1 + · · ·+Xn, where the Xn are independent and identically
distributed simple random variables with mean 0 and variance 1. If an are constants
satisfying

an → ∞, and
an√
n
→ 0, (12)

then
P
[
Sn ≥ an

√
n
]
= e−a2

n(1+ξn)/2 (13)

for a sequence ξn going to 0.

⋆ Intuition:

P
[
Sn ≥ an

√
n
]
= e−

a2
n
2

(1+ξn)

indicates that the probability of Sn being greater than an
√
n decays exponentially as n grows large. The

term e−
a2
n
2

(1+ξn) is an exponential function of −a2n, which itself grows without bound since an → ∞. The
decay is also affected by (1 + ξn), where ξn is a sequence that goes to 0, slightly adjusting the rate of decay,
but not changing the fact that it is exponential.

Now we prove the statement:

Proof. Put Yn = Sn − an/
√
n =

∑n
k=1(Xk − an/

√
n). Then E[Yn] < 0. X1 has mean 0 and

variance 1, P[X1 > 0] > 0, and it follows by assumption that P[X1 > an/
√
n] > 0 for n sufficiently

large, in which case P[Yn > 0] ≥ P[X1 − an/
√
n > 0]. Thus Theorem 2.1 applies to Yn for all

large enough n.
Let Mn(t), ρn, τn, and Zn be associated with Yn as in the theorem. If m(t) and c(t) are the

moment and cumulant generating functions of the Xn, then Mn(t) is the nth power of the moment
generating function e−tan/

√
nm(t) of X1 − an/

√
n, and so Yn has cumulant generating function

Cn(t) = −tan
√
n+ nc(t).

Since τn is the unique minimum of Cn(t), and since C ′′
n(t) = −an

√
n+nc′′(t), τn is determined by

the equation c′(τn) = an/
√
n. Since X1 has mean 0 and variance 1, it follows that c(0) = c′(0) = 0,

c′′(0) = 1.
Now c′(t) is nondecreasing because c(t) is convex, and since c′(τn) = an/

√
n goes to 0, τn must

therefore go to 0 as well and must in fact be O(an/
√
n). By the second-order mean-value theorem

for c′(t), an/
√
n = c′(τn) = τn +O(τ2n), from which follows

τn =
an√
n
+O

(
a2n
n

)
.

By the third-order mean-value theorem for c(t), we have

log pn = Cn(τn) = −τnan
√
n+ nc(τn)

= −τnan
√
n+ n

[
1

2
τ2n +O(τ3n)

]
.
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Applying the result for τn gives

log pn = −1

2
a2n + o(a2n).

Now, considering the moment generating function Mn(τn, t)/ρn and the cumulant generating
function Dn(t) = Cn(τn + t)− log pn, we find that the mean of Zn is D′

n(0) = 0. Its variance s2n
is D′′

n(0), which is
s2n = nc′′(τn) = n[c′′(0) +O(τn)] = n(1 + o(1)).

The fourth cumulant of Zn is D
(4)
n (0) = nc(4)(τn) = O(n). Thus, for all sufficiently large n, there

is a positive lower bound for the probability that Zn ≥ 0. By Theorem 9.1, P [Y ≥ 0] = pne
−θn ,

with θn = O(an) = o(a2n), and it follows that P [Y ≥ 0] = e−a2
n(1+o(1))/2.

Theorem 3.2 (Law of the Iterated Logarithm) — Let Sn = X1 + · · ·+Xn, where the Xn are
independent, identically distributed simple random variables with mean 0 and variance 1.
Then

P

[
lim sup
n→∞

Sn√
2n log log n

= 1

]
= 1. (14)

Equivalent to (14) is the assertion that for positive ε

P
[
Sn ≥ (1 + ε)

√
2n log log n i.o.

]
= 0 (15)

and
P
[
Sn ≥ (1− ε)

√
2n log log n i.o.

]
= 1. (16)

The set in (14) is, in fact, the intersection over positive rational ε of the sets in (16) minus
the union over positive rational ε of the sets in (15).

⋆ Theorem 3.2 states that for a sequence of i.i.d. random variables {Xi} with mean 0 and variance 1, the

limit superior of the normalized sum Sn√
2n log logn

as n tends to infinity is 1 with probability 1. Formally,

P

[
lim sup
n→∞

Sn√
2n log logn

= 1

]
= 1.

This means that as you consider larger and larger sums of these random variables, the sequence of sums,
when scaled by

√
2n log logn, will not indefinitely exceed 1, and it will be arbitrarily close to 1 infinitely

often.

Proof. We prove the proof in three parts:

ϕ(n) =
√
2n log log n. (17)

If A±
n = {Sn ≥ (1± ε)ϕ(n)}, then by (3.1), P (A±

n ) is near (log n)−(1±ε)2 . The theorem (3.1)

indicates that the probability of Sn being greater than an
√
n can be approximated by e−

a2
n
2 (1+ξn),

with ξn going to 0. If we take an to be (1±ε)
√
2 log log n, then an

√
n becomes (1±ε)

√
2n log log n,

or (1 ± ε)ϕ(n), and the probability P (A±
n ) can be estimated using the exponential expression

from the theorem2. If nk increases exponentially, i.e., nk ∼ θk for some θ > 1, then the
probability P (A±

nk
) behaves according to the order of k−(1±ε)2 . This implies that for large k, nk

is asymptotically equivalent to θk, where θ is a constant greater than 1. Given this exponential
growth rate, nk increases rapidly with k, as each term in the sequence is effectively multiplied by

2As n grows, logn increases, and hence (logn)−(1±ε)2 decreases. The idea is that the probability P (A±
n ) is

“near” this value in the sense that it follows the same trend; it becomes smaller as n increases, and does so in a

comparable way to the decay of (logn)−(1±ε)2 . The sum Sn being above the thresholds (1± ε)ϕ(n) behaves

similarly to the decay rate of (logn)−(1±ε)2 , due to the relationship given in the theorem for the probability of
Sn being greater than any growing threshold an

√
n.
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the factor θ, which is greater than 1, thereby making each successive term θ times larger than the
previous one. 3. Given the series

∑
k−(1±ε)2 , its convergence or divergence depends on the sign

associated with ε. Specifically, the series converges when the sign is positive and diverges when
the sign is negative. This behavior is crucial for applying the Borel–Cantelli lemmas. According
to the first Borel–Cantelli lemma, if a series of probabilities converges, then the probability that
the corresponding events occur infinitely often is 0. Consequently, there is a zero probability that
the event A+

nk
, defined as Sn ≥ (1 + ε)ϕ(nk), happens for infinitely many values of k.

To justify (15), it’s necessary to address that events A+
nk

for n ̸= nk also contribute, suggesting
the choice of θ close to 1. Conversely, if events A−

nk
were independent, the second Borel–Cantelli

lemma would ensure that A−
nk

occurs infinitely often with probability 1, leading directly to
(16). However, due to the dependency among A−

nk
events, a more elaborate argument is needed,

involving a larger θ.
To prove (15) we need a results where Mk = max{S0, S1, . . . , Sk}

Theorem 3.3 (Intermediate result to Prove (15) ) — If the Xk are independent simple
random variables with mean 0 and variance 1, then for α ≥

√
2.

P

[
Mn√
n

≥ α

]
≤ 2P

[
Sn√
n
≥ α−

√
2

]
. (18)

Proof. Let Aj = {Mj−1 < α
√
n ≤ Mj}, then

P

[
Mn√
n

≥ α

]
≤ P

[
Sn√
n
≥ α−

√
2

]
+

n−1∑
j=1

P

(
Aj ∩

[
Sn√
n
< α−

√
2

])
. (19)

Given that the difference Sn − Sj has variance n− j, and by leveraging the independence of the
Xk’s and Chebyshev’s inequality, we deduce that the probability term within the summation
cannot exceed a certain bound:

P

(
Aj ∩

[
|Sn − Sj |√

n
>

√
2

])
= P (Aj)P

(
|Sn − Sj |√

n
>

√
2

)
≤ 1

2
P (Aj). (20)

Since
⋃n

j=1 Aj ⊆ {Mn ≥ α
√
n},

P

[
Mn√
n

≥ α

]
≤ P

[
Sn√
n
≥ α−

√
2

]
+

1

2
P

[
Mn√
n

≥ α

]
. (21)

Now we return to the proof of Law of iterated logarithm:

Proof. Proof of (15). Given ε, choose θ so that θ > 1 but θ2 < 1 + ε. Let nk = [θk] and
xk = Θ(2 log log nk)

1/2. By theorems (3.1) and (3.3)

P

[
Mnk√
nk

≥ xk

]
≤ 2 exp

[
−1

2
(xk −

√
2)2(1 + ξk)

]
.

where ξk → 0. In the probability expression featuring the exponential term, the negative part of
the exponent grows in proportion to θ2 log k with increasing k. Given that θ > 1, this means the
negative component of the exponent eventually becomes larger than θ log k, indicating that the
probability decays at an accelerated rate. Thus:

P

[
Mnk√
nk

≥ xk

]
≤ 2

kθ
.

3nk ∼ θk means that the ratio nk

θk
approaches 1 as k goes to infinity. So for large values of k, nk can be

well-approximated by θk.
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Given θ > 1, the first Borel–Cantelli lemma implies that the event occurs with probability zero

Mnk
≥ θϕ(nk) (22)

for infinitely many k. Suppose that nk−1 < n ≤ nk and that

Sn > (1 + θ)ϕ(n). (23)

Now ϕ(n) ≥ ϕ(nk−1) ∼ θ−1/2ϕ(nk); hence, by the choice of θ, (1 + ε)ϕ(n) > Θϕ(nk) if k is large
enough. Thus for sufficiently large k, (23) implies (22) (if nk−1 < n ≤ nk), and there is therefore
probability 0 that (23) holds for infinitely many n.

Proof. Proof of (16). Given ε, we choose an integer θ so large that 3θ−1/2 < ε. Take nk = θk.
Now nk − nk−1 → ∞, and we apply (3.1) applies with n = nk − nk−1 and an = xk/

√
nk − nk−1,

where xk = (1− θ−1)ϕ(nk). It follows that

P
[
Snk

− Snk−1
≥ xk

]
= P

[
Snk−nk−1

≥ xk

]
= exp

[
−1

2

x2
k

nk − nk−1
(1 + ξk)

]
,

where ξk → 0.
For sufficiently large k, the negative exponent in the probability expression asymptotically

approaches (1− θ−1) log k, which is less than log k. Consequently, this gives a lower bound for
the probability P

[
Snk

− Snk−1
≥ xk

]
that decays slower than k−1. With the independence of

the events, the second Borel–Cantelli lemma ensures that almost surely, Snk
− Snk−1

will exceed
xk infinitely often.
By applying (15) to the negatives of the Xi’s, there is almost surely a bound such that

−Snk−1
≤ 2θ−1/2ϕ(nk) for all but finitely many k. These observations imply that Snk

surpasses

xk − 2θ−1/2ϕ(nk), which, due to the choice of θ, is greater than (1 − ε)ϕ(nk), hence the last
inequality holds.
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